Telegram Group & Telegram Channel
Есть ли встроенные модели регрессии, которые напрямую работают с пропущенными данными

Да, некоторые модели на основе деревьев решений (включая реализации градиентного бустинга и случайных лесов) могут обрабатывать пропущенные данные внутренне. Например, определённые вариации деревьев решений могут использовать суррогатные разбиения или разделения по умолчанию для объектов с отсутствующими значениями признаков.

Это значит, что модель может выбрать альтернативный путь по дереву, если основной признак отсутствует.

Такие механизмы встроены, например, в:
➡️ XGBoost (можно задать missing),
➡️ LightGBM (имеет встроенную поддержку NaN),
➡️ CatBoost (автоматически обрабатывает пропуски).

Однако, несмотря на удобство, следует внимательно оценивать качество модели, особенно если:
➡️ пропусков много,
➡️ отсутствие значений связано с целевой переменной или другими признаками.

В таких случаях простая внутренняя обработка может быть недостаточной, и потребуется анализ природы пропусков или применение более обоснованных методов (импутация, маскирование и др.).

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/957
Create:
Last Update:

Есть ли встроенные модели регрессии, которые напрямую работают с пропущенными данными

Да, некоторые модели на основе деревьев решений (включая реализации градиентного бустинга и случайных лесов) могут обрабатывать пропущенные данные внутренне. Например, определённые вариации деревьев решений могут использовать суррогатные разбиения или разделения по умолчанию для объектов с отсутствующими значениями признаков.

Это значит, что модель может выбрать альтернативный путь по дереву, если основной признак отсутствует.

Такие механизмы встроены, например, в:
➡️ XGBoost (можно задать missing),
➡️ LightGBM (имеет встроенную поддержку NaN),
➡️ CatBoost (автоматически обрабатывает пропуски).

Однако, несмотря на удобство, следует внимательно оценивать качество модели, особенно если:
➡️ пропусков много,
➡️ отсутствие значений связано с целевой переменной или другими признаками.

В таких случаях простая внутренняя обработка может быть недостаточной, и потребуется анализ природы пропусков или применение более обоснованных методов (импутация, маскирование и др.).

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/957

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.Библиотека собеса по Data Science | вопросы с собеседований from id


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA